

Adjoint modeling in cryosphere

Patrick Heimbach

MIT/EAPS, Cambridge, MA, USA

http://www.ecco-group.org

http://mitgcm.org

The MIT sea-ice model (MITsim)

Thermodynamics

- Based on Zhang & Hibler ,1997
- Two-category, zero-layer, snow melting and flooding (Semtner, 1976; Washington & Parkinson, 1979)
- Sea ice loading and dynamic ocean topography (Campin et al., in press 2008)

Dynamics

- Two solvers available for viscous-plastic (VP) rheology:
 - Line Successive Relaxation (LSR) implicit (Zhang & Hibler, 1997)
 - Elastic Viscous-Plastic (EVP) explicit (Hunke & Dukowicz, 1997)
- Both ported on C-grid for use in generalized curvilinear grids
- Various advection schemes available
- An exact (with respect to tangent linearity) adjoint,
 - generated via automatic differentiation tool TAF

Present Arctic configuration

- Coarsened Arctic face of the ECCO2 global cubed sphere (from ~18 km to ~36 km horizontal resolution)
- Underlying ocean model uses various parameterization schemes (KPP, GM/Redi)
- 6-hourly forcing via NCEP/NCAR atmospheric state, converted to open-ocean air-sea fluxes via Large & Yeager (2004)
- Sea-ice dynamics via LSR on C-grid
- Adjoint runs on 80 processors (e.g. on IBM SP or SGI Altix)

The forward model - configuration sensitivities lce drift velocities

The forward model - configuration sensitivities Effective ice thickness

Adjoint sensitivity of solid freshwater transport through Lancaster Sound

Adjoint sensitivity of solid freshwater transport through Lancaster Sound

Hovmueller diagrams of adjoint sensitivities

Another one: Sea-ice export through Fram Strait

Sea-ice state estimation in a limited-area setup of the Labrador Sea (I)

- MITgcm with Curvilinear Grid
 - $-30 \text{ km x } 30 \text{ km} \rightarrow 30 \text{ km x } 16 \text{ km}$
 - 23 vertical levels
- 1.5 Layer dynamic-thermodynamic sea ice model with snow
 - Stress-Strain rate based on Hibler (1980) ellipse
- Open boundaries
 - Weak sponge layers at Southern and Eastern edges
- Resolved Labrador and Greenland Shelves
 - Critical for sea ice production and advection
 - Important for boundary currents
- Computational efficient
 - Parallel: 1 real hr/ simulated year on 6 nodes

Ian Fenty (Ph.D. thesis)

Bathymetry of model domain. Each distinct pixel is on cell

Sea-ice state estimation in a limited-area setup of the Labrador Sea (II)

Correct propagation of adjoint variables

Cost function (J) = Week 52 Integrated ice area

Demonstration of influence of distribution of heat anomalies in space and time, dJ(x,T)/dT

- Results are of correct sign (additional heat decreases the week 52 ice concentration)
- Influence of SST anomalies are reduced further back time. Anomalies far in past are damped by the atmosphere.
- Subsurface influence persists and propagates upstream along the model's boundary currents (closed boundaries in this demonstration)

Ice Concentration at Week 52

dJ/dT (Surface)

dJ/dT (300 m)

Ian Fenty (Ph.D. thesis)

Evolution: from water to land ...

- Whilst standing on the Fennoscandian ice sheet, we thought...
- Adjoints should be useful for ice sheet modeling and estimation
- → Heimbach & Bugnion, 2008:

 Equilibrium sensitivities of the Greenland ice sheet inferred from the adjoint of the three-dimensional thermo-mechanical ice sheet model SICOPOLIS (submitted to Annals of Glaciology)

An adjoint of the ice sheet model SICOPOLIS

